Alternative Method C.—A cold (0°) mixture of 5.6 g (0.022 mole) of D-phenylalanine methyl ester hydrochloride and 2.2 g (0.022 mole) of Et₃N in 75 ml of DMF was filtered, and to the filtrate was added 9 g (0.022 mole) of O-acetyl-N-carbobenzoxy-serine *p*-nitrophenyl ester.¹⁰ The solution was kept 2 days at 25° and evaporated to an oil which was taken up in EtOAc. This solution was washed with H₂O, 5% NaHCO₃ solution, and dilute HCl, then dried and evaporated to a solid. The product, O-acetyl-N-carbobenzoxyseryl-D-phenylalanine methyl ester was recrystallized from EtOAc-petroleum ether, 7.5 g (77%), mp 132–133°, [α]²³D +4.4 (c 2, DMF).

Anal. Caled for $C_{23}H_{26}N_2O_7$: C, 62.43; H, 5.93; N, 6.33. Found: C, 62.44; H, 5.96; N, 6.52.

The methyl ester and O-acetyl groups were removed using an excess of 2 N NaOH in MeOH affording carbobenzoxyseryl-D-phenylalanine in 72% yield, mp 137–139°.

Method D.—To a cold (5°) solution of 7.9 g (0.03 mole) of carbobenzoxyhydroxyproline in 150 ml of MeCN was added 3 g of Et₃N and 7.5 g (0.03 mole) of Woodward's⁵ reagent K. The mixture was stirred 1 hr at 5°, and 5 g (0.03 mole) of p-valine methyl ester hydrochloride and 3 g of Et₃N were added. The mixture was stirred 48 hr at 25°. The solvent was evaporated, the residue was taken up in EtOAc, and the solution was washed with H₂O, 5% NaHCO₃ solution, and dilute HCl and dried. Evaporation of the solvent left an oil which would not crystallize: yield 8.4 g (74%).

Anal. Caled for $C_{19}H_{26}N_2O_6 \cdot H_2O$: C, 57.55; H, 7.12; N, 7.06. Found: C, 57.28; H, 7.00; N, 6.63.

Hydrolysis of the above methyl ester with NaOH in MeOH

(10) E. D. Nicolaides and H. A. DeWald, U. S. Patent 3,164,614 (1965).

gave carbobenzoxy hydroxy prolyl-D-valine in 80% yield, mp $62{-}68^\circ.$

Method E.—To a cold (7°) solution of 6 g (0.0238 mole) of carbobenzoxy-D-serine hydrazide in 50 ml of glacial HOAc and 30 ml of 1 N HCl was added over 15 min, 1.7 g (0.025 mole) of NaNO₂ in 5 ml of H₂O. After an additional 5 min, the solution was diluted with 200 ml of ice-H₂O and extracted with cold (-5°) EtOAc. The EtOAc solution was washed with ice-H₂O several times and with cold 5% Na₂CO₃ solution until neutral and dried. To this filtered solution at 0° was added a cold (0°) mixture of 5.5 g (0.024 mole) of D-phenylalanine methyl ester hydrochloride and 2.5 g of Et₃N in 50 ml of DMF. The solution was kept 24 hr at 5° and washed with 5% NaHCO₃ solution, and dilute HCl then dried and the solvent was evaporated. Et₂O-cyclohexane was added producing a colorless solid, 4.5 g (46%), mp 77–78°.

Anal. Calcd for $C_{21}H_{24}N_2O_6$: C, 62.99; H, 6.04; N, 7.00. Found: C, 62.73; H, 6.23; N, 6.93.

The methyl ester was removed in the usual manner giving carbobenzoxy-D-seryl-D-phenylalanine, mp 138-139°.

Acknowledgment.—We are indebted to Mr. C. E. Childs and his staff for the microanalyses, to Mrs. Carola Spurlock and Arlene Stec for the rotations, and to Dr. Harry Crooks and Dr. John Dice for many valuable discussions and encouragement during this investigation. We wish to thank Dr. Morton Munk for the preparation of two of the peptides and Drs. G. J. Dixon and F. M. Schabel, Jr., Southern Research Institute, for some of the testing.

Nitrofuryl Heterocycles. VII.¹ 4-Amino-6-(5-nitro-2-furyl)-1H-pyrazolo[3,4-*d*]pyrimidines

HOMER A. BURCH

Chemistry Division, The Norwich Pharmacal Company, Norwich, New York 13815

Received July 14, 1967

Fifty-two 1-alkyl-4-amino-6-(5-nitro-2-furyl)-1H-pyrazolo[3,4-d]pyrimidine derivatives were prepared and were found to possess excellent antibacterial activity. The most active compound was the 4-bis(2-hydroxy-propyl)amino-1-methyl derivative, which showed an oral ED_{50} of about 2 mg/kg against *Staphylococcus aureus* infections in mice.

In a previous paper in this series² it was shown that the attachment of a condensed pyrimidine ring system at the 2 position of the nitrofuran ring would give compounds possessing exceptional antibacterial activity. That paper described the antibacterial activity of numerous 4-amino-2-(5-nitro-2-furyl)quinazoline derivatives. The present paper is concerned with the synthesis and biological evaluation of derivatives of another condensed pyrimidine system, 1-alkyl-4-amino-6-(5-nitro-2-furyl)-1H-pyrazolo[3,4-d]pyrimidine.

Chemistry.—The excellent procedure of Taylor and Borror³ for condensing nitriles with 5-amino-4-cyanopyrazoles (1) in the presence of base to yield 6-substituted 4-aminopyrazolo[3,4-d]pyrimidines (2) was adapted to include the reaction of 2-furonitrile with 1. The desired nitrofuran derivatives were then prepared by mixed-acid nitration of 2. Unfortunately, this short synthesis was not applicable to the preparation of 4-substituted amino derivatives. These compounds were prepared with little difficulty, however, by the synthesis devised by Cheng and Robins.⁴ The reactions are summarized in Scheme I.

Thus, aminocyanopyrazole (1) was acylated with 2-furoyl chloride to give amide **3** which was cyclized in hot, alkaline, peroxide solution to pyrazolopyrimidinone (4). Mixed-acid nitration of 4 gave the nitrofuryl derivative 5 in excellent yield. The assignment of the keto form to the oxygen function in position 4 of compounds 4 and 5, rather than the frequently reported tautomeric hydroxy form, was based on the observation that carbonyl absorption occurred at 1650-1670 $\rm cm^{-1}$ in the infrared. Chlorination of 5 with PCl_5 in $POCl_3$ gave the 4-chloro compounds 6. Displacement of the chlorine atom in 6 with a variety of amines proceeded smoothly in DMF solution to give the amino derivatives 10-46, 49-55, and 58 listed in Table I. Displacement of the halogen in 6 with ammonia in aqueous DMF gave 7-9, identical by mixture melting points and infrared spectra with those obtained by the nitration of **2**.

Biological Screening Results.—The in vitro and

(4) C. C. Cheng and R. K. Robins, ibid., 23, 191 (1958).

⁽¹⁾ For the previous paper in this series see H. R Snyder, Jr., J. Med. Chem., 10, 737 (1967).

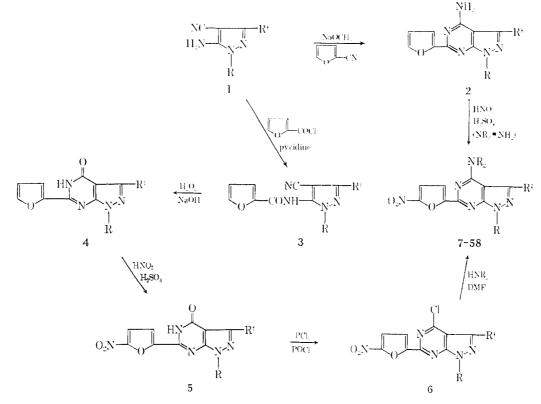
⁽²⁾ H. A. Burch, *ibi*.l., 9, 408 (1966).

⁽³¹ E. C. Taylor and A. L. Borror, J. Org. Chem., 26, 4967 (1961).

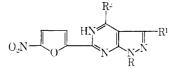
								0.1.1.V	N N <i>ZZ</i>	Staphylococ	${ m ED}_{30}$	
No.	R	BI	1: 2	R 2	Mp °C	Yield,	Formula	$\frac{Caled, \cdot_{\ell}}{C} = {N}$	C II N	MIC, µц/104	(mice). m⊈/kg oral	
			Ŗ									
		R										
2a 2b 2e 4a 4e 5b 5c 6a 6e 6e 6e 7 8 9 10 11 25	$\begin{array}{c} \mathrm{CH}_{2}\mathrm{CH}_{3}\\ \mathrm{CH}_{2}\mathrm{CH}_{2}\mathrm{CH}_{3}\mathrm{CH}_{3}\\ \mathrm{CH}_{2}\mathrm{CH}_{2}\mathrm{OH}_{3}\\ \mathrm{CH}_{3}\mathrm{CH}_{2}\mathrm{CH}_{3}\\ \mathrm{CH}_{2}\mathrm{CH}_{3}\\ \mathrm{CH}_{2}\mathrm{CH}_{2}\mathrm{CH}_{3}\\ \mathrm{CH}_{2}\mathrm{CH}_{2}\mathrm{CH}_{3}\\ \mathrm{CH}_{2}\mathrm{CH}_{2}\mathrm{OH}_{3}\\ \mathrm{CH}_{2}\mathrm{CH}_{2}\mathrm{OH}_{3}\\ \mathrm{CH}_{2}\mathrm{CH}_{2}\mathrm{CH}_{3}\\ \mathrm{CH}_{2}\mathrm{CH}_{2}\mathrm{CH}_{3}\\ \mathrm{CH}_{2}\mathrm{CH}_{2}\mathrm{CH}_{3}\\ \mathrm{CH}_{2}\mathrm{CH}_{2}\mathrm{CH}_{3}\\ \mathrm{CH}_{2}\mathrm{CH}_{2}\mathrm{OH}_{3}\\ \mathrm{CH}_{2}\mathrm{CH}_{2}\mathrm{CH}_{3}\\ \mathrm{CH}_{2}\mathrm{CH}_{3}\mathrm{CH}_{2}\mathrm{CH}_{3}\\ \mathrm{CH}_{2}\mathrm{CH}_{3}\mathrm{CH}_{2}\mathrm{CH}_{3}\\ \mathrm{CH}_{2}\mathrm{CH}_{3}\mathrm{CH}_{2}\mathrm{CH}_{3}\\ \mathrm{CH}_{2}\mathrm{CH}_{3}\mathrm{CH}_{2}\mathrm{CH}_{3}\\ \mathrm{CH}_{2}\mathrm{CH}_{3}\mathrm{CH}_{3}\\ \mathrm{CH}_{2}\mathrm{CH}_{3}\mathrm{CH}_{3}\\ \mathrm{CH}_{2}\mathrm{CH}_{3}\mathrm{CH}_{3}\\ \mathrm{CH}_{3}\\ \mathrm{CH}_{3}\\$	$\begin{array}{c} 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11$	$\begin{array}{c} NH_{2} \\ NH_{2} \\ NH_{2} \\ OH \\ O$	11 11 11 11 11 11 11 11 11 11	$\begin{array}{c} 234-235\\ 184-185\\ 192-193\\ 283.5-285\\ 260-261.5\\ 219-220\\ 201-202\\ 290-292\\ 325\ dec\\ 271-272.5\\ 241-242\\ 243-245\\ 293-295\\ 211-213\\ 182.5-183.5\\ 121-122\\ 156-157\\ 163-165\\ 320-321.5\\ 306-307\\ 289.5-290.5\\ 227-228\\ 237-238\\ 151-153\\ 108-110\\ \end{array}$	$\begin{array}{c} 65.5\\ 71.4\\ 78.6\\ 40.6\\ 78\\ 70\\ 72\\ 53\\ 54.5\\ 36.5\\ 84.5\\ 70\\ 70\\ 64\\ 27.7\\ 70\\ 64\\ 27.7\\ 70\\ 83.7\\ 90\\ 75\\ 84\end{array}$	$\begin{array}{c} C_{11}H_{11}N_5O\\ C_{12}H_{13}N_5O\\ C_{12}H_{13}N_5O\\ C_{12}H_{13}N_6O\\ C_{12}H_{13}N_4O_2\\ C_{10}H_8N_4O_2\\ C_{12}H_{12}N_4O_2\\ C_{12}H_{12}N_4O_2\\ C_{12}H_{12}N_4O_2\\ C_{12}H_{12}N_4O_2\\ C_{12}H_{12}N_4O_2\\ C_{11}H_9N_5O_4\\ C_{11}H_9N_5O_4\\ C_{12}H_{11}N_5O_4\\ C_{12}H_{11}N_5O_4\\ C_{12}H_{11}N_5O_4\\ C_{12}H_{11}N_5O_4\\ C_{10}H_6CIN_5O_3\\ C_{12}H_{10}CIN_5O_3\\ C_{12}H_{10}CIN_5O_3\\ C_{12}H_{10}CIN_5O_3\\ C_{12}H_{10}CIN_5O_3\\ C_{12}H_{10}N_6O_3\\ C_{12}H_{12}N_6O_3\\ C_{12}H_{12}N_6O_3\\ C_{12}H_{12}N_6O_3\\ C_{12}H_{12}N_6O_3\\ C_{13}H_{18}N_6O_3\\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} \cdots \\ \cdots $	$\begin{array}{c} \dots \\ \dots $	
14	CH_3	11	NH-S	$\rm NO_2$	209-210	7:;	$\mathrm{C}_{16}\mathrm{H}_{18}\mathrm{N}_6\mathrm{O}_3$	56.13 5.30 24.55	56.05 5.44 24.43	0.38	4	
$15 \\ 16 \\ 17 \\ 18$	CH _a CH _a CH _a CH _a CH ₃	11 11 11 11	$\begin{array}{c} \operatorname{N}(\operatorname{CH}_3)_2\\ \operatorname{N}(\operatorname{CH}_2\operatorname{CH}_3)_2\\ \operatorname{N}(\operatorname{CH}_2\operatorname{CH}_2\operatorname{CH}_3)_2\\ \operatorname{N}(\operatorname{CH}_2\operatorname{CH}_2\operatorname{CH}_3)_2 \end{array}$	NO2 NO2 NO2 NO2	217-218 172-173 159-160 202-205	77 78 91 83	$\begin{array}{c} C_{12} H_{12} N_6 O_3 \\ C_{14} H_{16} N_6 O_3 \\ C_{16} H_{20} N_6 O_3 \\ C_{12} H_{10} N_6 O_3 \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 0.38 \\ 0.19 \\ 0.095 \\ 0.75 \end{array}$	$egin{array}{c} 17 \\ 50 \\ 35 \\ >50 \end{array}$	
19	CII_3	11	N	NO_2	216-217	71.5	$\mathrm{C}_{14}\mathrm{H}_{14}\mathrm{N}_6\mathrm{O}_3$	53, 50 - 4, 49 - 26, 74	53.39 4.37 26.67	0.8	31	
20	CH_3	11	Д Д	$\rm NO_2$	181-183	82	$\mathbf{C_{16}H_{18}N_{8}O_{3}}$	56.13 5.30 24.55	56.30 5.19 24.62	0.75	50	
$21 \\ 22 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ 29 \\ 30 \\ 31 \\ 32$	$\begin{array}{c} {\rm CH}_{3} \\ {\rm CH}_{2} {\rm CH}_{2} {\rm CH}_{3} \\ {\rm CH}_{2} {\rm CH}_{2} {\rm CH}_{2} {\rm CH}_{3} \\ {\rm CH}_{2} {\rm CH}_{2} {\rm OCH}_{3} \\ {\rm CH}_{3} \\ {\rm CH}_{3} \\ {\rm CH}_{3} \\ {\rm CH}_{3} \\ {\rm CH}_{4} \\ {\rm CH}_{5} {\rm CH}_{3} \\ {\rm CH}_{5} {\rm CH}_{3} \\ {\rm CH}_{2} {\rm CH}_{2} {\rm CH}_{3} \\ {\rm CH}_{3} \\ {\rm CH}_{2} {\rm CH}_{2} {\rm CH}_{3} \\ {\rm CH}_{3}$	11 H H CH ₂ CH ₃ CH ₃ 11 H H H H H H	$\label{eq:higher} \begin{split} &\mathrm{NHCH}_2\mathrm{CH}_2\mathrm{OH}\\ &\mathrm{NHCH}_2\mathrm{CH}_2\mathrm{OH}\\ &\mathrm{NHCH}_2\mathrm{CH}_2\mathrm{OH}\\ &\mathrm{NHCH}_2\mathrm{CH}_2\mathrm{OH}\\ &\mathrm{NHCH}_2\mathrm{CH}_2\mathrm{OH}\\ &\mathrm{NHCH}_2\mathrm{CH}_{2\mathrm{OH}}\\ &\mathrm{NHCH}_2\mathrm{CH}\mathrm{McOH}\\ &\mathrm{NHCH}_2\mathrm{CH}\mathrm{McOH}\\ &\mathrm{NHCH}_2\mathrm{CH}_{2\mathrm{OH}}\\ &\mathrm{NHCH}_2\mathrm{CH}_{2\mathrm{OH}}\\ &\mathrm{NHeCH}_2\mathrm{CH}_{2\mathrm{OH}}\\ &\mathrm{NBuCH}_2\mathrm{CH}_{2\mathrm{OH}}\\ &\mathrm{NBuCH}_2\mathrm{CH}_{2\mathrm{OH}}\\ &\mathrm{NBuCH}_{2\mathrm{OH}}\\ &\mathrm{NBUC}\\ &\mathrm{NBUCH}_{2\mathrm{OH}}\\ &\mathrm{NBUCH}_{2\mathrm{OH}}\\ &\mathrm{NBUCH}_{2\mathrm{OH}}\\ &\mathrm{NBUCH}_{2\mathrm{OH}}\\ &\mathrm{NBUCH}_{2\mathrm{OH}}\\ &\mathrm{NBUC}\\ &NBUC$	$\begin{array}{c} \mathrm{NO}_{2} \\ \mathrm{NO}_{2} \end{array}$	$\begin{array}{c} 226 \ 226 \ .5 \\ 188 - 190 \\ 193 - 195 \\ 202 - 204 \\ 246 - 248 \\ 216 - 217 \\ 226 - 227 \\ 204 \ .5 - 205 \\ 188 - 190 \\ 147 - 148 \\ 120 - 121 \\ 208 - 209 \end{array}$	$\begin{array}{c} 74\\72\\86\\92\\91\\82.3\\83.7\\84.4\\80\\87.5\\83\\74\end{array}$	$\begin{array}{c} C_{12}H_{12}N_6O_4\\ C_{13}H_{14}N_6O_4\\ C_{14}H_{16}N_6O_4\\ C_{14}H_{16}N_6O_4\\ C_{14}H_{16}N_6O_4\\ C_{14}H_{16}N_6O_4\\ C_{13}H_{14}N_6O_4\\ C_{13}H_{14}N_6O_4\\ C_{13}H_{14}N_6O_4\\ C_{14}H_{16}N_6O_4\\ C_{16}H_{20}N_6O_4\\ C_{16}H_{20}N_6O_4\\ C_{16}H_{24}N_6O_4\\ C_{14}H_{16}N_6H_5\\ \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 0.2\\ 0.75\\ 0.75\\ 3\\ 0.8\\ 0.2\\ 0.38\\ 0.4\\ 3\\ 0.2\\ 0.75\\ 0.75\\ 0.75\end{array}$	$ \begin{array}{r} 19 \\ 25 \\ 35 \\ 38 \\ 1000 \\ 100 \\ 10 \\ 13 \\ 44 \\ 8 \\ 35 \\ 10 \\ 10 \end{array} $	

TABLE 1

Homer A. Burch


0S

Vol. 11


$\frac{33}{34}$	$\mathrm{CH_2CH_3}$ $\mathrm{CH_2CH_2OCH_3}$	H H	N(CH ₂ CH ₂ OH) ₂ N(CH ₂ CH ₂ OH) ₂ CH ₂ CH ₂ OH	$rac{\mathrm{NO}_2}{\mathrm{NO}_2}$	$\frac{175 - 176}{165 - 167}$	$\begin{array}{c} 61.8\\ 86\end{array}$	$\substack{ {\rm C}_{15}{\rm H}_{18}{\rm N}_6{\rm O}_5 \\ {\rm C}_{16}{\rm H}_{20}{\rm N}_6{\rm O}_6 }$	$\begin{array}{c} 49.72\\ 48.97 \end{array}$	$\begin{array}{c} 5.01 \\ 5.14 \end{array}$	$\begin{array}{c} 23.20\\ 21.42 \end{array}$	$\begin{array}{c} 49.63\\ 49.04\end{array}$			$\frac{1.5}{3}$	$\begin{array}{c} 20\\ 65 \end{array}$	January 1968
35	CII3	П	N CH ₂ CHMeOH CH,CH,OH	NO2	218-218.5	80	$\mathrm{C}_{15}\mathrm{H}_{18}\mathrm{N}_{6}\mathrm{O}_{5}$	49.72	5.01	23.20	49.71	5.12	23.15	0.2	10	y 1968
36	CH ₂ CH ₃	II	N CH ₂ CHMeOH CH ₂ CH ₂ OH	NO_2	144-145	76	$C_{16}H_{20}N_6O_5$	51.06	5.36	22.33	51.01	5.22	22.15	0.38	7	
37	$CH_2CH_2CH_3$	Н	N CII ₂ CHMe0H CH ₂ CH ₂ OH	NO_2	153-154	85	${ m C_{17}H_{22}N_6O_5}$	52.30	5.68	21.53	52.16	5.86	21.24	0.38	21	
38	CII2CH2OCII3	11	N	NO_2	149-151	48	${ m C_{17}H_{22}N_6O_6}$	50.24	5.46	20.68	50.36	5.59	20.57	1.5	44	
$\begin{array}{c} 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 45\\ 46\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 53\end{array}$	$\begin{array}{c} {\rm CH}_{3} \\ {\rm CH}_{2} {\rm CH}_{3} \\ {\rm CH}_{2} {\rm CH}_{2} {\rm CH}_{2} {\rm CH}_{3} \\ {\rm CH}_{2} {\rm CH}_{2} {\rm CH}_{3} \\ {\rm CH}_{3} \\ {\rm CH}_{2} {\rm CH}_{2} {\rm CH}_{3} \\ {\rm CH}_{2} {\rm CH}_{2} {\rm CH}_{3} \\ {\rm CH}_{3} \end{array}$	H II H H CH ₂ CH ₃ H II II H H H	$\label{eq:chi} CH_2CHMeOH N(CH_2CHMeOH)_2 N(CH_2CHMeOH)_2 N(CH_2CHMeOH)_2 N(CH_2CH_2CHMeOH)_2 N(CH_2CH_2CH_2OCH_3 NHCH_2CH_2OCH_3 NHCH_2CH_2OCH_3 NHCH_2CH_2OCH_3 NHCH_2CH_2OCH_3 NHCH_2CH_2OCH_3 NHCH_2OCH_3CH_3OCH_3 NHCHMeCH_2OCH_3 NHCHMeCH_2OCH_3 NHCHMeCH_2OCH_3 NHCHMeCH_2OCH_3 NM_{C}CH_2CH_2OCH_3 NM_{C}CH_2CH_2OCH_3 N(CH_2CH_2OCH_3 N(CH_2CH_2CH_2OCH_3 N(CH_2CH_2CH_2CH_2CH_2CH_2CH_2CH_2CH_2CH_2$	$\begin{array}{c} NO_2\\ \end{array}$	$\begin{array}{c} 222-223.5\\ 227-229\\ 188-190\\ 188-190\\ 183-184.5\\ 147-148\\ 111-113\\ 163-164\\ 154-156\\ 148-149\\ 141-142.5\\ 171-172\\ 165-166\\ 107.5-108\\ 280-281.5\\ \end{array}$	$\begin{array}{c} 74.3\\ 42.5\\ 69\\ 65\\ 49\\ 58\\ 71\\ 93\\ 90\\ 71\\ 74.5\\ 78\\ 55.5\\ 58.5 \end{array}$	$\begin{array}{c} C_{16}H_{20}N_6O_5\\ C_{17}H_{22}N_6O_5\\ C_{18}H_{24}N_6O_5\\ C_{18}H_{24}N_6O_6\\ C_{13}H_{14}N_6O_4\\ C_{14}H_{16}N_6O_4\\ C_{15}H_{18}N_6O_5\\ C_{15}H_{18}N_6O_5\\ C_{15}H_{16}N_6O_5\\ C_{16}H_{18}N_6O_5\\ C_{16}H_{18}N_6O_5\\ C_{14}H_{12}N_6O_4\\ C_{14}H_{16}N_6O_4\\ C_{14}H_{16}N_6O_4\\ C_{13}H_{24}N_6O_5\\ C_{18}H_{24}N_6O_5\\ \end{array}$	$\begin{array}{c} 53.45\\ 51.42\\ 49.05\\ 50.60\\ 49.72\\ 52.02\\ 50.00\\ 51.33\\ 50.60\\ 50.60\\ \end{array}$	5.68 5.98 5.75 4.43 4.85 5.01 5.24 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 5.98	$\begin{array}{c} 22.33\\ 21.53\\ 20.78\\ 19.99\\ 26.41\\ 25.29\\ 23.20\\ 24.27\\ 23.23\\ 22.45\\ 25.29\\ 25.29\\ 25.29\\ 20.78\\ 23.13 \end{array}$	$\frac{49.08}{50.36}$	$\begin{array}{r} 4.96 \\ 4.91 \\ 4.94 \\ 4.75 \\ 5.91 \end{array}$	$\begin{array}{c} 22,29\\ 21,56\\ 20,64\\ 20,08\\ 26,37\\ 25,27\\ 23,23\\ 23,85\\ 23,12\\ 22,62\\ 25,08\\ 25,29\\ 25,33\\ 20,81\\ \end{array}$	$\begin{array}{c} 0.095\\ 0.8\\ 0.38\\ 0.8\\ 0.75\\ 1.5\\ 1.5\\ 3\\ 0.75\\ 3.1\\ 0.4\\ 0.38\\ 0.75\\ 3\\ 0.4\\ 0.4\\ 0.38\\ 0.75\\ 3\\ 0.4\\ 0.4\\ 0.4\\ 0.4\\ 0.4\\ 0.4\\ 0.4\\ 0.4$	$2.2 \\ 12 \\ 22 \\ 10 \\ 16 \\ 29 \\ 14 \\ 100 \\ 14 \\ 41 \\ 25 \\ 42 \\ 12 \\ 16 \\ 27$	Nitrofuryl Heterocycles.
54	$\mathrm{CII}_2\mathrm{CII}_3$	Π	NH(CH ₂) ₃ NO·1IC1	$\rm NO_2$	264-265	43.5	$\mathrm{C_{18}H_{24}ClN_7O_4}$	49.37	5.52	22.39	49.42	5.62	22.12	1.5	93	VII
55	$\mathrm{CH}_2\mathrm{CH}_2\mathrm{OCH}_3$	Н	NH(CH2)3NO-HCl	NO_2	248-250	79	$\mathrm{C_{19}H_{26}ClN_7O_5}$	48.77	5.60	20.96	48.74	5.64	20.68	1.5	100	.,
56 57 58	CH ₂ CH ₃ CH ₂ CH ₃ CH ₃ CH ₃ NC	H H H R^{1} N^{-N}	NAcCH2CH2OH NAcCH2CH2OAc N(NH2)CH2CH2OH	$rac{\mathrm{NO}_2}{\mathrm{NO}_2}$ NO_2 NO_2	181–183 162–164 220–221	85 73 78	$\begin{array}{c} C_{15}H_{16}N_6O_5\\ C_{17}H_{18}N_6O_6\\ C_{12}H_{13}N_7O_4 \end{array}$	$50.00 \\ 50.74 \\ 45.14$	4.51	23.23 20.89 30.88	$\begin{array}{c} 49.78 \\ 50.75 \\ 45.20 \end{array}$	4.54	$23.36 \\ 20.99 \\ 30.89$	$egin{array}{c} 3\\ 3\\ 0.2 \end{array}$	50 50 7	
3a 3b 3c 3d 3e Nitro	CH ₃ CH ₂ CH ₃ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ OCH ₃ CH ₃ furazone'	Ŕ H H II H CH ₂ CH ₃			$\begin{array}{c} 171\text{-}172.5\\ 149.5\text{-}150.5\\ 115\text{-}116\\ 101\text{-}103\\ 145\text{-}147 \end{array}$	88 79 89 61 70	$\begin{array}{c} C_{10}H_8N_4O_2\\ C_{11}H_{14}N_4O_2\\ C_{12}H_{12}N_4O_2\\ C_{12}H_{12}N_4O_3\\ C_{12}H_{12}N_4O_3\\ \end{array}$	55.55 57.38 59.01 55.38 59.01	$4.38 \\ 4.95 \\ 4.65$	25.9224.3422.9421.5322.94	55.36 57.41 58.77 55.36 59.13	$4.51 \\ 5.10 \\ 4.62$	25.9524.3723.0521.5923.16	···· ···· 12.5	 50	

^a Cl. ^b Furacin[®] for comparison.

81

in vivo antibacterial properties were determined using the methods described previously.⁵ The data obtained on 5-58 are summarized in Table I. The effects of substitutions at three positions in the pyrazolopyrimidine ring system were investigated. In general,

in vivo activity against Staphylococcus aureus infections in mice was greatest when R was methyl. The activity decreased with increasing chain length. The substitution of alkyl groups for hydrogen at \mathbb{R}^1 caused a significant decrease in both in vitro and in vivo antibacterial activity. All pyrazolopyrimidines containing a chlorine atom or a hydroxyl group at R² were inactive in vivo at the drug levels tested. Activity was found only when an amino or a substituted-amino group was introduced at R^2 . Noteworthy activity was found when the hydroxyethylamino group was introduced at R². Substitution of a methyl group for hydrogen on the hydroxyl carbon atom enhanced the activity. The activity was increased further by the introduction of the bis(2-hydroxyalkyl)amino group at \mathbb{R}^2 . Thus, the most active compound prepared in this series was the 4-bis(2-hydroxypropyl)amino-1methyl analog **39** which showed an ED_{50} of about 2 mg/kg.

Other significantly active compounds in this series were 10, 12, 14, 27, 28, 30, 32, 35, 36, 40, 42, 43, 45, 47, 51, 52, and 58. The following compounds in Table I, when subjected to toxicopathological evaluation in two dogs for a period of 30 days at a peroral dosage level of approximately 40 mg/kg daily, elicited no signs of toxicosis: 7, 19, 22, 33, 35, 36, 39, and 43.

Experimental Section

All melting points were taken on a hot stage (Mel-Temp) melting point apparatus and are corrected.

2-Methoxyethylhydrazine.—A solution of 1070 g (21.4 moles) of 100% N₂H₄·H₂O was heated to 100° and the heat source was turned off. 2-Methoxyethyl chloride⁶ (421 g, 4.46 moles) was added dropwise with stirring during 2.5 hr at 98–102°. The resulting solution was heated for 10 hr at 105° and allowed to cool overnight. The product was isolated by continuous E(2O extraction of the reaction mixture during 5 days. Evaporation of the E(2) left an oil which was distilled through a 45.7-cm Vigreux column. The fraction boiling at 83–90° (56 mm) was collected; yield 317 g (79\%). An analytical sample boiled at 84° (50 mm), $n^{26.5}$ D 1.4411.

Anal. Caled for $C_4H_{10}N_2O$: C, 39.98; H, 11.18; N, 31.08. Found: C, 39.85; H, 11.25; N, 31.07.

5-Amino-4-cyano-1-(2-methoxyethyl)pyrazole (1a).—A solution of 152 g (1.24 moles) of ethoxymethylenemalononitrile (Kay-Fries) and 112 g (1.24 moles) of 2-methoxyethylhydrazine in 1 k of absolute E(OII was refuxed for 24 hr. After removal of the solvents *in vacuo*, the residue was taken up in a minimum of boiling $C_{6}H_{a}$, treated with charcoal, and filtered. Dilution of the cooled filtrate with two volumes of petroleum ether (bp 30–60°) followed by thorough chilling precipitated the product as colorless platelets melting at 110–112°, yield 132 g (64%). Recrystallization from $C_{6}H_{a}$ -petroleum ether taken the melting point to 114–115°.

Anal. Caled for C₇H_BN₄O: C, 50.59; H, 6.07; N, 33.72, Found: C, 50.53; H, 6.14; N, 33.92.

5-Amino-4-cyano-1-methylpyrazole (1b) was prepared from MeNHNH₂ (Mathicson Chemical Corp.) according to the procedure of Cheng and Robins.⁷

5-Amino-4-cyano-1-ethylpyrazole (1c).—To 122 g (1.0 mole) of ethoxymethylenenialonouitrile in 1 l. of MeOH was added in portions through the condenser 60 g (1.0 mole) of $EtNHNH_2.8$

(7) C. C. Cheug and R. K. Robins, J. Ory. Chem., 21, 1340 (1958).

(8) A. N. Kost and R. S. Sagitullio, Zh. Obsheb. Khim., 33, 867 (1963); Chem. Abstr., 59, 8724c (1963).

⁽⁵⁾ F. F. Ebetino, W. F. Carey, and B. F. Stevenson, J. Med. Chem., 6, 633 (1963).

⁽⁶⁾ G. M. Beanett and F. Heathcoar, J. Chem. Soc., 270 (1929).

When the exothermic reaction had ceased, the solution was refluxed for 1 hr, and solvents were evaporated *in vacuo* ou a steam bath. The residue was crystallized from EtOAc-MeOH (5:2) (charcoal) to give the product as colorless needles melting at 159–160°, yield 49.5 g. The filtrate was chromatographed over Al₂O₃ to give 66 g of product after evaporation of the solvent. The total yield was 115.5 g (85%). Recrystallization from EtOAc rnised the melting point to 163–163.5°.

Anal. Caled for $C_6H_8N_4$: C, 52.92; II, 5.92; N, 41.15. Found: C, 52.88; H, 5.96; N, 41.33.

5-Amino-4-cyano-1-propylpyrazole (1d) was prepared from $PrNHNH_{2^8}$ in 36% yield by the method described for 1c. The chromatographed material was recrystallized from *i*-PrOH (charcoa!) to give the product as colorless needles melting at 159–160°.

Anal. Caled for $C_7H_{10}N_4$: C, 55.98; H, 6.71; N, 37.31. Found: C, 56.03; H, 6.60; N, 37.15.

5-Amino-4-cyano-3-ethyl-1-methylpyrazole (1e).—To 110 g (0.74 mole) of ethylethoxymethylenemalononitrile⁹ in 750 ml of absolute EtOH was added slowly through the condenser 34.5 g (0.75 mole) of MeNHNH₂. When the exothermic reaction had ceased, the solution was refluxed for 3 hr, then stripped of solvents *in vacuo* on a steam bath. The crystalline residue was boiled for 15 min with charcoal in a minimum of C_6H_6 , filtered, and cooled, and the filtrate was diluted with two volumes of petroleum ether to give the product as colorless needles melting at 84.5–86°, yield 103 g (94%).

Anal. Caled for C: $H_{10}N_4$: C, 55.98; H, 6.71; N, 37.31. Found: C, 55.98; H, 6.44; N, 37.36.

4-Amino-1-ethyl-6-(2-furyl)-1H-pyrazolo[3,4-d]pyrimidine (2a).—A solution of 66 g (0.7 mole) of 2-furonitrile, 96 g (0.7 mole) of 1c, and 70 g (1.3 moles) of NaOMe in 1.5 l. of *i*-PrOH was refluxed for 48 hr. The solvents were removed *in vacuo* on a steam bath and the residue was slurried with 1 kg of ice-H₂O. The crude product was filtered, washed thoroughly with H₂O, and dried at 65°. Recrystallization from *i*-PrOH (charcoal) gave the product as colorless platelets. Other derivatives of 2 were prepared from the appropriate 5-amino-4-cyanopyrazole.

4-Amino-1-ethyl-6-(5-nitro-2-furyl)-1H-pyrazolo[3,4-d] pyrimidine (7).—Compound 2a (25 g) was pulverized and added in portions with stirring to 250 ml of concentrated H₂SO₄ below 10°. The temperature was lowered to -5° by means of an icesalt bath and kept below 10°, while 50 ml of concentrated HNO₃ in 50 ml of concentrated H₂SO₄ was added dropwise during 15 min. Stirring was then continued in the cold for 1 hr. The mixture was poured over 1 kg of ice, neutralized with 20% NaOH, and diluted with H₂O to a final volume of 5 l. The crude product was filtered, washed thoroughly with H₂O to remove traces of Na₂SO₄, and air dried on the funnel. Recrystallization from DMF (charcoal) gave the product as yellow needles. Compounds 8 and 9 were prepared from the appropriate 2.

N-(4-Cyano-1-methyl-5-pyrazolyl)-2-furamide (3a).—To a solution of 91 g (0.74 mole) of 1b in 300 ml of pyridine was added cautiously with stirring, 101 g (0.74 mole) of 2-furoyl chloride. After the solution was heated on a steam bath for 1 hr, it was poured into 1 l. of ice-H₂O and allowed to stand overnight. The crude product was filtered, washed with cold H₂O, and dried at 65°. This material was used without further purification. Recrystallization of a sample from aqueous MeOH (charcoal) gave the product as large, colorless needles. Compounds 3b-e were prepared from the appropriate 5-amino-4-cyanopyrazole.

6-(2-Furyl)-1-methyl-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-one (4a).—To a warm (35-45°) solution of 62 g of NaOH in 2700 ml

of H₂O was added cautiously with stirring, 230 ml of 30% H₂O₂. This was followed by the addition of 245 g (1.13 moles) of 3a in small portions during about 1 hr. A few milliliters of EtOAc was added periodically to control frothing. The solution was then heated on a steam bath under reflux for 20 hr, chilled, and neutralized cautiously with AcOH. Frothing was controlled again by the addition of EtOAc. The solids were filtered, washed with cold H_2O , and dried at 65° to give 167 g of crude product. The pulverized, crude product was stirred for 15 min in 500 ml of MeCN and filtered, and the residue was dried at 65°. This separation process was repeated until an infrared spectrum of the residual solids showed an absence of nitrile absorption at 2350 cm⁻¹. Evaporation of the MeCN washings gave 29 g of recovered 3a. The 4a thus obtained was used without further purification. Recrystallization of a sample from MeNO₂ (charcoal) gave the product as colorless needles. Compounds 4b-e were prepared from the appropriate 3.

1-Methyl-6-(5-nitro-2-furyl)-1H-pyrazolo[3,4-d] pyrimidin-4(5H)-one (5a).—To 300 ml of concentrated H_2SO_4 kept below 20° was added 101 g (0.47 mole) of 4a in small portions with stirring. A solution of 50 ml of concentrated HNO₃ in 50 ml of concentrated H_2SO_4 was added dropwise at 25-30°. The mixture was stirred at 25-30° for 1 hr following the addition and poured over 2 kg of ice. The excess acid was neutralized by the careful addition of 20% NaOH with cooling. The crude product was filtered, washed thoroughly with H_2O , and dried at 56°. Recrystallization from aqueous DMF (charcoal) gave 5a as yellow needles. Compounds 5b-e were prepared from the appropriate 4.

4-Chloro-1-methyl-6-(5-nitro-2-furyl)-1H-pyrazolo[3,4-d]pyrimidine (6a).—To a suspension of 52 g (0.25 mole) of PCl₅ in 300 ml of POCl₃ was added 65 g (0.25 mole) of 5a. The resulting suspension was refluxed with stirring for 3 hr, after which time solution was complete. The cooled solution was diluted with 500 ml of petroleum ether and filtered. After washing with petroleum ether and air drying on the funnel, the crude product was used without further purification. Recrystallization of a sample from aqueous DMF (charcoal) gave 6a as light yellow needles. Compounds 6b-e were prepared from the appropriate 5.

1-Methyl-4-methylamino-6-(5-nitro-2-furyl)-1H-pyrazolo-[3,4-d] pyrimidine (10).—To a mixture of 42 g (0.15 mole) of 6a in 350 ml of DMF was added 25 g (0.32 mole) of 40% aqueous MeNH₂. The mixture was stirred for 15 min, heated on a steam bath for 15 min, cooled, and diluted with 400 ml of H₂O. The crude solid was filtered and recrystallized from aqueous DMF (charcoal) from which the product separated as yellow needles. The remaining compounds in Table I were prepared from the appropriate 6 and amine. Other recrystallization solvents used included alcohols and MeCN.

Acetylated Derivatives.—Compounds 43, 44, and 22 were refluxed in Ac_2O for a few hours to give, after quenching on ice and recrystallization from MeOH, compounds 47, 48, and 57, respectively. A monoacetylated derivative of 22 (56) was prepared by refluxing 22 in excess AcCl-AcOH solution. The position of the acetyl group was assigned arbitrarily.

Acknowledgments.—The author is indebted to Mr. W. O. Smith and Mr. B. F. Stevenson and associates for assistance in the preparation of these compounds, to Dr. G. S. Denning, Jr., for synthesizing 2-methoxyethylhydrazine, to Mr. G. Gustin and Mr. M. Tefft for the elemental analyses, to Mr. H. E. Russell and Mr. R. Freedman for the microbiological testing data, and to Dr. G. S. Murti and associates for performing the toxicopathological studies.

⁽⁹⁾ L. Nicholl, P. J. Tarsio, and H. Blohm, U. S. Patent 2,824,121; Chem. Abstr., 52, 11909i (1958).